Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Chinese Medical Journal ; (24): 2091-2101, 2021.
Article in English | WPRIM | ID: wpr-887631

ABSTRACT

BACKGROUND@#Long non-coding RNA (lncRNA) actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) functions as a competing endogenous RNA to regulate target genes expression by sponging microRNAs (miRs) to play cancer-promoting roles in cancer stem cells. However, the regulatory mechanism of AFAP1-AS1 in cervical cancer (CC) stem cells is unknown. The present study aimed to provide a new therapeutic target for the clinical treatment of CC.@*METHODS@#Hyaluronic acid receptor cluster of differentiation 44 variant exon 6 (CD44v6)(+) CC cells were isolated by flow cytometry (FCM). Small interfering RNAs of AFAP1-AS1 (siAFAP1-AS1) were transfected into the (CD44v6)(+) cells. The levels of AFAP1-AS1 were measured by quantitative real-time PCR (qRT-PCR). Sphere formation assay, cell cycle analysis, and Western blotting were used to detect the effect of siAFAP1-AS1. RNA pull-down and luciferase reporter assay were used to verify the relationship between miR-27b-3p and AFAP1-AS1 or vascular endothelial growth factor (VEGF)-C.@*RESULTS@#CD44v6(+) CC cells had remarkable stemness and a high level of AFAP1-AS1. However, AFAP1-AS1 knockdown with siAFAP1-AS1 suppressed the cell cycle transition of G(1)/S phase and inhibited self-renewal of CD44v6(+) CC cells, the levels of the stemness markers octamer-binding transcription factor 4 (OCT4), osteopontin (OPN), and cluster of differentiation 133 (CD133), and the epithelial-mesenchymal transition (EMT)-related proteins Twist1, matrix metalloprotease (MMP)-9, and VEGF-C. In the mechanism study, miR-27b-3p/VEGF-C signaling was demonstrated to be a key downstream of AFAP1-AS1 in the CD44v6(+) CC cells.@*CONCLUSIONS@#LncRNA AFAP1-AS1 knockdown inhibits the CC cell stemness by upregulating miR-27b-3p to suppress VEGF-C.


Subject(s)
Female , Humans , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Uterine Cervical Neoplasms/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor C
2.
Chinese Herbal Medicines ; (4): 202-209, 2021.
Article in Chinese | WPRIM | ID: wpr-953663

ABSTRACT

Objective: Huidouba (HDB) is a Chinese folk medicine used to treat diabetes in Sichuan Province, China. Therefore, we investigated the anti-diabetic effects of HDB and its underlying mechanisms. We hypothesized that HDB treatment could enhance glucose tolerance and insulin sensitivity, and thus prevent a hyperglycemia state. Methods: To test the hypothesis, streptozotocin (STZ)-induced diabetic mice and db/db mice, widely used models of hyperglycemia and insulin-resistant diabetes, were either treated with HDB, metformin, or acarbose. Blood glucose, oral glucose tolerance test, insulin tolerance test, pancreatic histopathology and serum biochemistry were detected to assess the hypoglycemic effect of HDB. Results: HDB treatments were found to show the effect in reducing glucose levels. HDB also resulted in a significant reduction in body weight and food intake in the STZ-induced diabetic mouse model. Furthermore, it significantly improved glucose and insulin tolerance in the two diabetic mouse models. Importantly, insulin, glucagon, pancreatic polypeptide, and somatostatin immunohistochemistry revealed that HDB treatment improved the function and the location of the cells in the islets compared with the other two treatments. HDB treatment resulted in significant restoration of islet function. Our results illustrated the underlying mechanism of HDB in the progression of diabetes, and HDB can be an effective agent for the treatment of diabetes. Conclusion: The results of this study suggested that HDB can reduce blood glucose levels in STZ-induced hyperglycemic mice and db/db mice.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 35-43, 2020.
Article in Chinese | WPRIM | ID: wpr-873246

ABSTRACT

Objective::To explore the effect and mechanism of Portulacae Herba protecting carbon tetrachloride (CCl4)-induced acute liver injury. Method::Sixty Kunming mice were randomly divided into normal group, model group, silybin group (200 mg·kg-1) and Portulacae Herba high, medium, low (2, 1, 0.5 g·kg-1) dose groups. After continuous intragastric administration for 5 days, mice in each group were intraperitoneally injected with 0.2% CCl4 peanut oil solution to establish acute liver injury model, except normal mice. After 23 hours of modeling, serum and liver tissue were collected. Fully automatic analysis of serum serum liver function indicators in mice. Liver tissues were taken for hematoxylin-eosin staining (HE) staining to observe liver pathological changes. RNA Sequencing (RNA-seq) was used to analyze differential genes and functional enrichment, real-time fluorescence quantification PCR(Real-time PCR) was used to verify the mRNA expression of cytochrome P450 family members(CYP)26A1, CYP2C37, CYP2C44, CYP2C50, CYP2C54. Result::Compared with normal group, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), total bilirubin (TBIL), malondialdehyde (MDA) in model group were significantly increased (P<0.05), and the activities of triglyceride (TG) and superoxide dismutase (SOD) were significantly decreased (P<0.05). Compared with model group, Portulaca Herba significantly reduced ALT, AST, TBIL and MDA levels in mice with acute liver injury (P<0.05), significantly increased SOD activity (P<0.01), and decreased the degree of liver tissue damage in mice. Compared with normal group, the mRNA expressions of CYP2C44, CYP2C50 in mice with acute liver injury were significantly decreased (P<0.05). Compared with model group, the mRNA expressions of CYP26A1, CYP2C37, CYP2C44, CYP2C50 and CYP2C54 were significantly increased in all dose groups of Portulaca Herba (P<0.05, P<0.01). Conclusion::Portulacae Herba has significant protective effects on acute liver injury caused by CCl4, and its mechanism may be related to the regulation of cytochrome P450 related genes.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 84-90, 2020.
Article in Chinese | WPRIM | ID: wpr-872893

ABSTRACT

Objective:From a new perspective,to explore therapeutic effect of Huidouba (HDB) on alleviating kidney oxidative damage in rats with diabetic nephropathy (DN) and provide a scientific basis for developing HDB as a potential Tibetan medicine for treatment of DN. Method:Rats were fed with high-fat diet (HFD) and injected with streptozocin (STZ, 65 mg·kg-1) intraperitoneally to induce DN model, while rats in Blank group were injected with an equal volume of vehicle and fed with normal chow. The successfully modeling DN rats were randomly divided into three groups, 8 rats per group, DN model group (10 mL·kg-1·d-1), Metformin group (0.045 g·kg-1·d-1) and HDB group (0.18 g·kg-1·d-1). Monitor body weight (BW) and fasting blood glucose (FBG) weekly, and collect 24 hours urine before and after medication to examine microalbuminuria (mAlb). Calculate kidney index (KI) after sacrificing, analyze mAlb, serum creatinine (SCr) and blood urea nitrogen (BUN) with a fully automatic biochemical analyzer. Histopathology of kidney was observed by Masson staining. Lipid peroxidation malondialdehyde (MDA) assay kit was used to examine MDA content in kidney tissue. Nox4, as a subtype of triphosphopyridine nucleotide (NADPH) oxidase family was determined by Western blot and immunofluorescence assay of kidney tissue. Result:Compared with blank group, levels of FBG, 24 h mAlb, SCr, BUN and MDA in DN model group were increased (P<0.01), tissue damage was obvious and Nox4 expression in glumeruli was increased significantly (P<0.01). Compared with DN model group, levels of FBG, 24 h mAlb, SCr, BUN and MDA in drug administration groups were decreased (P<0.01), kidney injury was alleviated and Nox4 expression was down-regulated(P<0.01). Conclusion:HDB as a Yiqiyangyin Tibetan medicine, could ease oxidative stress injury of kidney and reduce proteinuria in DN rats, thus prevent the development of DN. Its mechanism is closely related to down-regulating Nox4 expression of kidney tissue in DN rats.

SELECTION OF CITATIONS
SEARCH DETAIL